Abstract

The Vibrio cholerae lipopolysaccharide O1 antigen is a major target of bacteriophages and the human immune system and is of critical importance for vaccine design. We used an O1-specific lytic bacteriophage as a tool to probe the capacity of V. cholerae to alter its O1 antigen and identified a novel mechanism by which this organism can modulate O antigen expression and exhibit intra-strain heterogeneity. We identified two phase variable genes required for O1 antigen biosynthesis, manA and wbeL. manA resides outside of the previously recognized O1 antigen biosynthetic locus, and encodes for a phosphomannose isomerase critical for the initial step in O1 antigen biosynthesis. We determined that manA and wbeL phase variants are attenuated for virulence, providing functional evidence to further support the critical role of the O1 antigen for infectivity. We provide the first report of phase variation modulating O1 antigen expression in V. cholerae, and show that the maintenance of these phase variable loci is an important means by which this facultative pathogen can generate the diverse subpopulations of cells needed for infecting the host intestinal tract and for escaping predation by an O1-specific phage.

Highlights

  • Lipopolysaccharide (LPS) is a prominent constituent of the outer membrane of Gram-negative bacteria

  • We discovered that two genes, which are critical for O1 antigen biosynthesis, are subject to phase variation

  • We demonstrate for the first time that the O1 antigen is subject to phase variation and show that this is mediated by three homonucleotide tracts in two genes, which are critical for O1 antigen biosynthesis

Read more

Summary

Introduction

Lipopolysaccharide (LPS) is a prominent constituent of the outer membrane of Gram-negative bacteria. The genes currently described as being required for the synthesis of the O1 antigen are located on chromosome 1 of the V. cholerae O1 N16961 genome between open reading frames (ORFs) VC0240 (gmhD) and VC0264 (rjg) (Fig. 1A) [9]. This region (the wbe or rfb region) was originally identified through the heterologous expression of the V. cholerae O1 antigen in Escherichia coli K-12 [10]. The genes responsible for O1 antigen biosynthesis have been placed into the following five groups according to putative function: perosamine biosynthesis (VC0241–VC0244) [12]; O antigen transport (VC0246–VC0247) [13]; tetronate biosynthesis (VC0248–VC0252) [14]; O antigen modification (VC0258) [15,16]; and additional genes essential for O antigen biosynthesis

Author Summary
Findings
Materials and Methods
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.