Abstract

Animal monitoring systems often rely on expensive and challenging GPS-based systems to obtain accurate trajectories. However, an alternative approach is to generate synthetic trajectories that exhibit similar statistical properties to real trajectories. These synthetic trajectories can be used effectively in the design of surveillance systems such as wireless sensor networks and drone-based techniques, which aid in data collection and the delineation of areas for animal conservation and reintroduction efforts. In this study, we propose a data generation method that utilizes simple phase-type distributions to produce synthetic animal trajectories. By employing probability distribution functions based on the exponential distribution, we achieve highly accurate approximations of the movement patterns of four distinct animal species. This approach significantly reduces processing time and complexity. The research primarily focuses on generating animal trajectories for four endangered species, comprising two terrestrial and two flying species, in order to demonstrate the efficacy of the proposed method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call