Abstract

The present paper extends the “Erlangization” idea introduced by Asmussen, Avram, and Usabel (2002) to the Sparre-Andersen and stationary renewal risk models. Erlangization yields an asymptotically-exact method for calculating finite time ruin probabilities with phase-type claim amounts. The method is based on finding the probability of ruin prior to a phase-type random horizon, independent of the risk process. When the horizon follows an Erlang-l distribution, the method provides a sequence of approximations that converges to the true finite-time ruin probability as l increases. Furthermore, the random horizon is easier to work with, so that very accurate probabilities of ruin are obtained with comparatively little computational effort. An additional section determines the phase-type form of the deficit at ruin in both models. Our work exploits the relationship to fluid queues to provide effective computational algorithms for the determination of these quantities, as demonstrated by the numerical examples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.