Abstract

Percolation and fracture propagation in disordered solids represent two important problems in science and engineering that are characterized by phase transitions: loss of macroscopic connectivity at the percolation threshold p_{c} and formation of a macroscopic fracture network at the incipient fracture point (IFP). Percolation also represents the fracture problem in the limit of very strong disorder. An important unsolved problem is accurate prediction of physical properties of systems undergoing such transitions, given limited data far from the transition point. There is currently no theoretical method that can use limited data for a region far from a transition point p_{c} or the IFP and predict the physical properties all the way to that point, including their location. We present a deep neural network (DNN) for predicting such properties of two- and three-dimensional systems and in particular their percolation probability, the threshold p_{c}, the elastic moduli, and the universal Poisson ratio at p_{c}. All the predictions are in excellent agreement with the data. In particular, the DNN predicts correctly p_{c}, even though the training data were for the state of the systems far from p_{c}. This opens up the possibility of using the DNN for predicting physical properties of many types of disordered materials that undergo phase transformation, for which limited data are available for only far from the transition point.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.