Abstract

AbstractWe compute the KMS (equilibrium) states for the canonical time evolution on C*-algebras from actions of congruence monoids on rings of algebraic integers. We show that for each $\beta \in [1,2]$, there is a unique KMS$_\beta $ state, and we prove that it is a factor state of type III$_1$. There are phase transitions at $\beta =2$ and $\beta =\infty $ involving a quotient of a ray class group. Our computation of KMS and ground states generalizes the results of Cuntz, Deninger, and Laca for the full $ax+b$-semigroup over a ring of integers, and our type classification generalizes a result of Laca and Neshveyev in the case of the rational numbers and a result of Neshveyev in the case of arbitrary number fields.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.