Abstract

Disorder can localize the eigenstates of one-dimensional non-Hermitian systems, leading to an Anderson transition with a critical exponent of 1. We show that, due to the lack of energy conservation, the dynamics of individual, real-space wave packets follows a different behavior. Both transitions between localization and unidirectional amplification, as well as transitions between distinct propagating phases become possible. The critical exponent of the transition is close to 1/2 in propagating-propagating and (de)localization transitions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.