Abstract
We systematically analyze the various phase transitions of the anisotropic Dicke model that is endowed with both rotating and counter-rotating light-matter couplings. In addition to the ground state quantum phase transition (QPT) from the normal to the super-radiant phase, the anisotropic Dicke model also exhibits other transitions namely the excited state quantum phase transition (ES- QPT), ergodic to non-ergodic transition (ENET) and the temperature dependent phase transition. We show that these phase transitions are profitably studied not only with the standard consecutive level spacing ratio, but also with the aid of various eigenvector quantities such as von Neumann entanglement entropy, the participation ratio, multifractal dimension and mutual information. For ENET, both the statics and dynamics of the participation ratio offer a consistent and useful picture. An exciting finding from our work is that the ESQPT and the ENET are closely related to each other. We show this with the aid of two characteristic energies in the spectrum corresponding to jumps in von Neumann entropy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.