Abstract

AbstractWe study a spectral initialization method that serves a key role in recent work on estimating signals in non-convex settings. Previous analysis of this method focuses on the phase retrieval problem and provides only performance bounds. In this paper, we consider arbitrary generalized linear sensing models and present a precise asymptotic characterization of the performance of the method in the high-dimensional limit. Our analysis also reveals a phase transition phenomenon that depends on the ratio between the number of samples and the signal dimension. When the ratio is below a minimum threshold, the estimates given by the spectral method are no better than random guesses drawn from a uniform distribution on the hypersphere, thus carrying no information; above a maximum threshold, the estimates become increasingly aligned with the target signal. The computational complexity of the method, as measured by the spectral gap, is also markedly different in the two phases. Worked examples and numerical results are provided to illustrate and verify the analytical predictions. In particular, simulations show that our asymptotic formulas provide accurate predictions for the actual performance of the spectral method even at moderate signal dimensions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.