Abstract

The theory of what happens to a superfluid in a random field, known as the “dirty boson” problem, directly relates to a real experimental system presently under study by several groups, namely excitons in coupled semiconductor quantum wells. We consider the case of bosons in two dimensions in a random field, when the random field can be large compared to the repulsive exciton–exciton interaction energy, but is small compared to the exciton binding energy. The interaction between excitons is taken into account in the ladder approximation. The coherent potential approximation (CPA) allows us to derive the exciton Green's function for a wide range of the random field strength, and in the weak-scattering limit CPA results in the second-order Born approximation. For quasi-two-dimensional excitonic systems, the density of the superfluid component and the Kosterlitz–Thouless temperature of the superfluid phase transition are obtained, and are found to decrease as the random field increases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call