Abstract

We study the thermodynamic behavior of static and spherically symmetric hairy black holes in massive gravity. In this case, the black hole is surrounded in a spherical cavity with a fixed temperature on the surface. It is observed that these black holes have a phase transition similar to the liquid-gas phase transition of a Van der Waals fluid. Also, by treating the cosmological constant $\Lambda$ as a thermodynamic pressure $P$, we study the thermodynamic behavior of charged anti-de Sitter black holes in an ensemble with a pressure of $P$ and an electric potential $\Phi$ as the natural variables. A second order phase transition is observed to take place for all the values of the electric potential $\Phi$.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.