Abstract

Black hole solutions of type IIB supergravity were previously found that are dual to N=4 supersymmetric Yang-Mills plasma with an anisotropic spatial deformation. In the zero temperature limit, these black holes approach a Liftshitz like scaling solution in the IR. It was recently shown that these black holes are unstable, and at low temperatures there is a new class of black hole solutions that are thermodynamically preferred. We extend this analysis, by considering consistent truncations of the Kaluza-Klein reduction of IIB supergravity on a five-sphere that preserves multiple scalar and $U(1)$ gauge fields. We show that the previously constructed black holes become unstable at low temperatures, and construct new classes of exotic black hole solutions. We study the DC thermo-electric conductivity of these $U(1)$ charged black holes, and find a diverging DC conductivity at zero temperature due to the divergence of the gauge field coupling.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call