Abstract

The effect of temperature on the activation energies of mitochondrial enzymes of the yeast Saccharomyces cerevisiae was examined. Non-linear Arrhenius plots with discontinuities in the temperature range 14-19 degrees C and 19-22 degrees C were observed for the respiratory enzymes and mitochondrial ATPase (adenosine triphosphatase) respectively. A straight-line Arrhenius plot was observed for the matrix enzyme, malate dehydrogenase. The activation energies of the enzymes associated with succinate oxidation, namely, succinate oxidase, succinate dehydrogenase and succinate-cytochrome c oxidoreductase, were in the range 60-85kJ/mol above the transition temperature and 90-160kJ/mol below the transition temperature. In contrast, the corresponding enzymes associated with NADH oxidation showed significantly lower activation energies, 20-35kJ/mol above and 40-85kJ/mol below the transition temperature. The discontinuities in the Arrhenius plots were still observed after sonication, treatment with non-ionic detergents or freezing and thawing of the mitochondrial membranes. Discontinuities for cytochrome c oxidase activity were only observed in freshly isolated mitochondria, and no distinct breaks were observed after storage at -20 degrees C. Mitochondrial ATPase activity still showed discontinuities after sonication and freezing and thawing, but a linear plot was observed after treatment with non-ionic detergents. The results indicate that the various enzymes of the respiratory chain are located in a similar lipid macroenvironment within the mitochondrial membrane.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call