Abstract
We study 1D fermions with photoassociation or with a narrow Fano-Feshbach resonance described by the Boson-Fermion resonance model. Using thebosonization technique, we derive a low-energy Hamiltonian of the system. We show that at low energy, the order parameters for the Bose Condensation and fermion superfluidity become identical, while a spin gap and a gap against the formation of phase slips are formed. As a result of these gaps, charge density wave correlations decay exponentially in contrast with the phases where only bosons or only fermions are present. We find a Luther-Emery point where the phase slips and the spin excitations can be described in terms of pseudofermions. This allows us to provide closed form expressions of the density-density correlations and the spectral functions. The spectral functions of the fermions are gapped, whereas the spectral functions of the bosons remain gapless. The application of a magnetic field results in a loss of coherence between the bosons and the fermion and the disappearance of the gap. Changing the detuning has no effect on the gap until either the fermion or the boson density is reduced to zero. Finally, we discuss the formation of a Mott insulating state in a periodic potential. The relevance of our results for experiments with ultracold atomic gases subject to one-dimensional confinement is also discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.