Abstract

Phase transitions in spin-glass type systems and, more recently, in related computational problems have gained broad interest in disparate arenas. In the current work, we focus on the “community detection” problem when cast in terms of a general Potts spin-glass type problem. As such, our results apply to rather broad Potts spin-glass type systems. Community detection describes the general problem of partitioning a complex system involving many elements into optimally decoupled “communities” of such elements. We report on phase transitions between solvable and unsolvable regimes. A solvable region may further split into “easy” and “hard” phases. Spin-glass type phase transitions appear at both low and high temperatures (or noise). Low-temperature transitions correspond to an “order by disorder” type effect wherein fluctuations render the system ordered or solvable. Separate transitions appear at higher temperatures into a disordered (or an unsolvable) phase. Different sorts of randomness lead to disparate behaviors. We illustrate the spin glass character of both transitions and report on memory effects. We further relate Potts type spin systems to mechanical analogs and suggest how chaotic-type behavior in general thermodynamic systems can indeed naturally arise in hard computational problems and spin glasses. The correspondence between the two types of transitions (spin glass and dynamic) is likely to extend across a larger spectrum of spin-glass type systems and hard computational problems. We briefly discuss potential implications of these transitions in complex many-body physical systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call