Abstract

AbstractThe effect of pressure on the naturally occurring hydroxide-perovskite stottite, FeGe(OH)6, has been studied in situ by micro-Raman spectroscopy to 21 GPa at 300 K. The ambient spectrum contains six OH-stretching bands in the range 3064 3352 cm–1. The presence of six non-equivalent OH groups is inconsistent with space group P42/n. In view of this inconsistency a new ambient structure determination of stottite from Tsumeb was carried out, but this did not allow the clear rejection of P42/n symmetry. However, a successful refinement was also carried out in space group P2/n, a subgroup of P42/n, which allows for six non-equivalent O atoms. The two refinements are of comparable quality and do not allow a choice to be made based purely on the X-ray data. However, taken with the ambient and 150 K Raman spectra, a good case can be made for stottite having P2/n symmetry at ambient conditions. On this basis, the pressure induced spectroscopic changes are interpreted in terms of a reversible phase transition P2/n ↔ P42/n.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.