Abstract

It has been a long time belief that, with increasing the scattering strength of multiple scattering media, the transport of light gradually slows down and, eventually, comes to a halt corresponding to a localized state. Here we present experimental evidence that different stages emerge in this evolution, which cannot be described by classical diffusion with conventional scaling arguments. A microscopic model captures the relevant aspects of electromagnetic wave propagation and explains the competing mechanisms that prevent the three-dimensional wave localization. We demonstrate that strong evanescent-field couplings hinder the localization of wave resonances and, therefore, impede the slowing down of diffusion. The emerging out of equilibrium steady-state process resembles the diffusion of classical particles in spatially correlated random potentials and the thermalization of matter waves due to atomic collisions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.