Abstract
Analytical tools are applied to investigate piecewise linear coupled map lattices in terms of probabilistic cellular automata. The so-called disorder condition of probabilistic cellular automata is closely related with attracting sets in coupled map lattices. The importance of this condition for the suppression of phase transitions is illustrated by spatially one-dimensional systems. Invariant densities and temporal correlations are calculated explicitly. Ising type phase transitions are found for one-dimensional coupled map lattices acting on repelling sets and for a spatially two-dimensional Miller-Huse-like system with stable long time dynamics. Critical exponents are calculated within a finite size scaling approach. The relevance of detailed balance of the resulting probabilistic cellular automaton for the critical behavior is pointed out.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.