Abstract

We perform a three-dimensional, finite temperature Skyrme-Hartree-Fock study of inhomogeneous nuclear matter to determine the critical density and temperature for the phase transition between the pasta phase and homogeneous matter and its properties. We employ four different parametrizations of the Skyrme nuclear energy-density functional, SkM$^*$, SLy4, NRAPR and SQMC700, which span a range of saturation-density symmetry energy behaviours constrained by a variety of nuclear experimental probes. For each of these interactions we calculate free energy, pressure, entropy and chemical potentials in the range of particle number densities where the nuclear pasta phases are expected to exist, 0.02 - 0.12 fm$^{-3}$, temperatures 2 - 8 MeV and a proton fraction of 0.3. We find unambiguous evidence for a first-order phase transition to uniform matter, unsoftened by the presence of the pasta phases. No conclusive signs of first-order phase transition between the pasta phases is observed, and it is argued that the thermodynamic quantities vary continuously right up to the first-order phase transition to uniform matter. We compare our results with thermodynamic spinodals calculated using the same Skyrme parameterizations, finding that the effect of short-range Coulomb correlations and quantum shell effects included in our model leads to the pasta phases existing at densities up to 0.1 fm$^{-3}$ above the spinodal boundaries, thus increasing the transition density to uniform matter by the same amount. The transition density is otherwise shown to be insensitive to the symmetry energy at saturation density within the range constrained by the concordance of a variety of experimental constraints, and can be taken to be a well-determined quantity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call