Abstract

As the pioneer semiconductor in transistor, germanium (Ge) has been widely applied in information technology for over half a century. Although many phase transitions in Ge have been reported, the complicated phenomena of the phase structures in amorphous Ge under extreme conditions are still not fully investigated. Here, we report the different routes of phase transition in amorphous Ge under different compression conditions utilizing diamond anvil cell (DAC) combined with synchrotron-based X-ray diffraction (XRD) and Raman spectroscopy techniques. Upon non-hydrostatic compression of amorphous Ge, we observed that shear stress facilitates a reversible pressure-induced phase transformation, in contrast to the pressure-quenchable structure under a hydrostatic compression. These findings afford better understanding of the structural behaviors of Ge under extreme conditions, which contributes to more potential applications in the semiconductor field.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call