Abstract
We study the phase transitions and critical phenomena in 3D site-diluted (with nonmagnetic impurities) Potts model with spin states q=4 by Monte-Carlo method. The systems with linear sizes L=20-32 and spin concentrations p=1.00, 0.90, 0.65 are examined. Using the Binder cumulants method the forth order it is shown that the second-order phase transition is observed in strongly diluted model at spin concentration p=0.65; the pure model (p=1.00) and weakly diluted one (p=0.90) reveals the first-order phase transition. On the basis of finite-size scaling theory the static critical parameters of heat capacity, susceptibility, magnetization, and correlation length exponent are calculated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.