Abstract
We study a two dimensional version of Neuhauser's long range sexual reproduction model and prove results that give bounds on the critical values λf for the process to survive from a finite set and λe for the existence of a nontrivial stationary distribution. Our first result comes from a standard block construction, while the second involves a comparison with the “generic population model” of Bramson and Gray (1991) [3]. An interesting new feature of our work is the suggestion that, as in the one dimensional contact process, edge speeds characterize critical values. We are able to prove the following for our quadratic contact process when the range is large but suspect they are true for two dimensional finite range attractive particle systems that are symmetric with respect to reflection in each axis. There is a speed c(θ) for the expansion of the process in each direction. If c(θ)>0 in all directions, then λ>λf, while if at least one speed is positive, then λ>λe. It is a challenging open problem to show that if some speed is negative, then the system dies out from any finite set.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.