Abstract

Phase transitions and effects of external noise on many-body systems are one of the main topics in physics. In mean-field coupled nonlinear dynamical stochastic systems driven by Brownian noise, various types of phase transitions including nonequilibrium ones may appear. A Brownian motion is a special case of Lévy motion and the stochastic process based on the latter is an alternative choice for studying cooperative phenomena in various fields. Recently, fractional Fokker-Planck equations associated with Lévy noise have attracted much attention and behaviors of systems with double-well potential subjected to Lévy noise have been studied intensively. However, most of such studies have resorted to numerical computation. We construct an analytically solvable model to study the occurrence of phase transitions driven by Lévy stable noise.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.