Abstract

We discuss possible roles in the Early Universe of the electroweak (EW) phase transition, which endows masses to the various particles, and the QCD phase transition, which gives rise to quark confinement and chiral symmetry breaking. Both phase transitions are well-established phenomena in the standard model of particle physics. Presumably, the EW phase transition would have taken place in the early universe at around 10-11sec, or at the temperature of about 300 GeV while QCD phase transition occurred between 10-5sec and 10-4sec, or at about 150 MeV. In this article, I wish to model the EW or QCD phase transition in the early universe as driven by a complex scalar field with spontaneous symmetry breaking such that the continuous degeneracy of the true ground states can be well represented. Specific interest has been directed to nucleation of domains, production of domain walls, and subsequent re-organization of domain walls resulting in "domain-wall nuggets". It is suggested that the domain-wall nuggets contribute to dark matter in the present Universe.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call