Abstract

We study an active random walker model in which a particle's motion is determined by a self-generated field. The field encodes information about the particle's path history. This leads to either self-attractive or self-repelling behavior. For self-repelling behavior, we find a phase transition in the dynamics: when the coupling between the field and the walker exceeds a critical value, the particle's behavior changes from renormalized diffusion to one characterized by a diverging diffusion coefficient. The dynamical behavior for all cases is surprisingly independent of dimension and of the noise amplitude.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.