Abstract

AbstractHigh-energy synchrotron X-ray diffraction is a powerful tool for bulk studies of materials. In this investigation, it is applied to the investigation of an intermetallic γ-TiAl based alloy with a composition of Ti-46Al-9Nb. The morphology of the reflections on the Debye-Scherrer rings is evaluated in order to approach grain sizes as well as crystallographic correlations. An in-situ heating cycle from room temperature to a temperature above the α-transus temperature has been conducted starting from a massively transformed sample. With increasing temperature the occurrence of strain relaxation, chemical and phase separation, domain orientations, phase transitions, recrystallization processes, and subsequent grain growth can be observed. During cooling to room temperature, crystallographic correlations between the re-appearing γ-phase and the host α-phase, known as the Blackburn correlation, are observed in the reciprocal lattice, which splits into different twinning and domain orientation relationships present in the fully lamellar microstructure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.