Abstract

In this work we have studied the phases of the XY antiferromagnetic model in the checkerboard lattice (the two-dimensional analog of the pyrochlore lattice). Using the traditional linear spin–wave approximation, we obtain a transition from an order to a disordered phase in some critical value rc=J′/J. The phase transition occurs due to quantum fluctuations. However, when we consider higher order perturbations the scenario is entirely different. We have applied the Self-Consistent Harmonic Approximation method and the results show that quantum perturbations induce long-range spin–spin correlations even above the critical point rc. This is a typical feature of order-by-quantum disorder when the system chooses one of the many classical ground states to occupy. We have also determined the thermal phase transitions similar to the Berezinskii–Kosterlitz–Thouless phase transition and the action of a single-ion anisotropy, responsible for a Quantum Phase Transition at zero temperature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.