Abstract

Phase transitions and microwave dielectric properties in the (1−x)Ca(Al0.5Nb0.5)O3–xCaTiO3 system were analyzed using x-ray and neutron powder diffraction, transmission electron microscopy, Raman spectroscopy, and dielectric measurements at microwave frequencies (2–8 GHz). Rietveld structural refinements demonstrated that both end compounds exhibit similar octahedral tilted frameworks, while in Ca(Al0.5Nb0.5)O3, tilting is superimposed onto NaCl-type ordering of Al and Nb on the B sites. Accordingly, the room-temperature structures of CaTiO3 and Ca(Al0.5Nb0.5)O3 are described by orthorhombic Pbnm and monoclinic P21/n symmetries, respectively, with similar lattice parameters, √2ac×√2ac×2ac (where ac is the lattice parameter of cubic perovskite). The (1−x)Ca(Al0.5Nb0.5)O3–xCaTiO3 system features both cation ordering and octahedral tilting phase transitions. The Ca(Al0.5Nb0.5)O3 structure remains ordered at least up to 1625 °C. However, the temperature of the order/disorder transition decreases rapidly with increasing Ti content, which correlates with a progressive increase of cation disorder in the specimens. A disordered structure is attained at x=0.5. For the “solid solutions,” the nonlinear dependence of both permittivity ε and the temperature coefficient of the resonant frequency τf on Ti content corresponds to a linear dependence of the macroscopic polarizability on composition; that is, the oxide additivity rule was closely obeyed. Therefore, this rule can be used to predict ε and τf for any intermediate composition from the permittivities and temperature coefficients of permittivity of the end compounds. A zero temperature coefficient of the resonant frequency occurs at the composition x≈0.5 with a relative permittivity of 50 and a Qf value of approximately 30 000 GHz (@4 GHz).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.