Abstract
In this paper, we study the thermodynamics and geothermodynamics of spherical black hole solutions in dRGT massive gravity in a new extended phase space. Inspire by the work of Kastor et al. (Class Quantum Gravity 26:195011, 2009), by interpreting the graviton mass as a thermodynamical variable, we propose a first law of thermodynamics which include a mass term and establish a new Smarr Formula. Then, we perform a thermodynamical analysis to reveal the existence of a critical behavior for black holes in dRGT massive gravity with two different critical points through canonical and grand canonical ensembles. To consolidate these results, we make use of the thermodynamical geometry formalism, with the HPEM and the Gibbs free energy metrics, to derive the singularities of Ricci scalar curvatures and show that they coincide with those of the capacities. The effect of different values of the spacetime parameters on the stability conditions is also discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.