Abstract
The phase transitions (PTs) and critical properties of the antiferromagnetic Ising model on a layered (stacked) triangular lattice have been studied by the Monte Carlo method using a replica algorithm with allowance for the next-nearest-neighbor interactions. The character of PTs is analyzed using the histogram technique and the method of Binder cumulants. It is established that the transition from the disordered to paramagnetic phase in the adopted model is a second-order PT. Static critical exponents of the heat capacity (α), susceptibility (γ), order parameter (β), and correlation radius (ν) and the Fischer exponent η are calculated using the finite-size scaling theory. It is shown that (i) the antiferromagnetic Ising model on a layered triangular lattice belongs to the XY universality class of critical behavior and (ii) allowance for the intralayer interactions of next-nearest neighbors in the adopted model leads to a change in the universality class of critical behavior.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.