Abstract

We report here high-pressure--high-temperature Raman experiments performed on ${\text{BiVO}}_{4}$. We characterized the fergusonite and scheelite phases (powder and single crystal samples) and the zircon polymorph (nanopowder). The experimental results are supported by ab initio calculations, which, in addition, provide the vibrational patterns. The temperature and pressure behavior of the fergusonite lattice modes reflects the distortions associated with the ferroelastic instability. The linear coefficients of the zircon phase are in sharp contrast to the behavior observed in the fergusonite phase. The boundary of the fergusonite-to-scheelite second-order phase transition is given by ${T}_{F\ensuremath{-}\mathrm{Sch}}(\text{K})=\ensuremath{-}166(8)P(\text{GPa})+528(5)$. The zircon-to-scheelite, irreversible, first-order phase transition takes place at ${T}_{Z\ensuremath{-}\mathrm{Sch}}(\text{K})=\ensuremath{-}107(8)P(\text{GPa})+690(10)$. We found evidence of additional structural changes around 15.7 GPa, which in the downstroke were found to be not reversible. We analyzed the anharmonic contribution to the wave-number shift in fergusonite using an order parameter. The introduction of a critical temperature depending both on temperature and pressure allows for a description of the results of all the experiments in a unified way.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.