Abstract

The prediction of reaction pathways for solid-solid transformations remains a key challenge. Here, we develop a pathway sampling method via swarm intelligence and graph theory and demonstrate that our pallas method is an effective tool to help understand phase transformations in solid-state systems. The method is capable of finding low-energy transition pathways between two minima without having to specify any details of the transition mechanism a priori. We benchmarked our pallas method against known phase transitions in cadmium selenide (CdSe) and silicon (Si). pallas readily identifies previously reported, low-energy phase transition pathways for the wurtzite to rock-salt transition in CdSe and reveals a novel lower-energy pathway that has not yet been observed. In addition, pallas provides detailed information that explains the complex phase transition sequence observed during the decompression of Si from high pressure. Given the efficiency to identify low-barrier-energy reaction pathways, the pallas methodology represents a promising tool for materials by design with valuable insights for novel synthesis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.