Abstract

The effect of decoherence on the phase transition of a Bose—Einstein condensate in a symmetric double-well potential is determined by the mean atom number difference. It still has two phases, the tunneling phase and the self-trapping phase, even under decoherence. The density matrix and the operator fidelity also show very different behaviors in the two phases. This suggests that operator fidelity can be used to characterize the phase transition of this Bose—Einstein condensate model, even under decoherence.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.