Abstract
BiVO4 nanoparticles are prepared by molten salt method. Tetragonal BiVO4 completely transforms to monoclinic phase after heating in molten LiNO3 at 270 °C for 18 h. The average particle sizes of monoclinic BiVO4 varied from 30 to 52 nm while the initial ratio of BiVO4 to LiNO3 changes from 1:6 to 1:24. The photocatalytic activity is evaluated by measuring decolorization of N,N,N′,N′-tetraethylated rhodamine dye solution under visible-light irradiation. Both of the de-ethylation and chromophore cleavage are responsible for the decolorization of RB. The sample with an average particle size of 52 nm and a moderate surface area of 10 m2/g exhibit the highest visible-light photocatalytic activity. The shift of Raman peak position indicates that the symmetry distortions in the local structure of the monoclinic BiVO4. The variations of the local structure result in the modification of the electronic structure, which is responsible for the high visible-light photocatalytic activity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.