Abstract
The critical behavior of the Ising model on a one-dimensional network, which has long-range connections at distances l>1 with the probability theta(l) approximately l(-m), is studied by using Monte Carlo simulations. Through analyzing the Ising model on networks with different m values, this paper discusses the impact of the global correlation, which decays with the increase of m, on the phase transition of the Ising model. Adding the analysis of the finite-size scaling of the order parameter [M], it is observed that in the whole range of 0<m<2, a finite-temperature transition exists, and the critical exponents show consistence with mean-field values, which indicates a mean-field nature of the phase transition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.