Abstract
Low-cost sodium-ion batteries have demonstrated great prospects in energy storage, among which layered transition metal oxides hold great potential as a cathode material. However, the notorious phase transition in layered cathode materials has greatly hampered their cycle life due to large volume changes upon desodiation/sodiation. In this study, by adopting an O3-type NaNi1/3Fe1/3Mn1/3O2 (NFM) with controlled synthesis temperatures, we have revealed that the grain size is closely related to its phase transition behaviors. The layered material with a smaller grain size and more distorted lattice tends to experience a shorter plateau of the O3-P3-O3 phase transitions during the charge/discharge process. Despite having a lower nominal discharge capacity without the phase transition plateau, its cycling stability increases from 77.4% to 96.2% after 100 cycles with greatly reduced intragranular cracks. The smaller grain size and lattice distortion act as a barrier that prevents the smooth layer from gliding upon sodium intercalation and deintercalation. This study focuses on the influence of grain size on battery cycle stability and provides a basis for future analysis of the structural instability of layered materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.