Abstract

The complex pressure and temperature dependent phase behavior of the semicrystalline polymer polytetrafluoroethylene (PTFE) has been investigated experimentally. One manifestation of this behavior has been observed as an anomalous abrupt ductile-to-brittle transition in the failure mode of PTFE rods in Taylor cylinder impact tests when impact velocity exceeds a narrow critical threshold. Earlier, hydrocode calculations and Hugoniot estimates have indicated that this critical velocity corresponds to the pressure in PTFE associated with the transition from a crystalline phase of helical structure to the high pressure crystalline phase (phase III) of a planar form. The present work represents PTFE as a material in a simplified phase structure with the transition between the modeled phases regulated by a kinetic description. The constitutive modeling describes the evolution of mechanical characteristics corresponding to the change of mechanical properties due to either an increase of crystallinity or the phase transition of a crystalline low-pressure component into phase III. The modeling results demonstrate that a change in the kinetics of the transition mechanism in PTFE when traversing the critical impact velocity can be used to explain the failure of the polymer in the Taylor cylinder impact tests.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call