Abstract
Dynamic mass generation in 3D quantum electrodynamics (QED3) is considered at T ≠ 0. To solve the Schwinger–Dyson equation for the Matsubara electron Green’s function, the ladder approximation is used and the corresponding photonic function is taken in the Landau gauge. In this case, the instant approximation is used for the photonic function. It is established that the process of dynamical mass generation in QED3 at T ≠ 0 is accompanied by a phase transition. Formal analogy of transitions in the coupling constant is revealed at T ≠ 0 in QED3, at T = 0 in QED4, and in graphene theory. Critical values of the coupling constant and temperature, calculated numerically based on an approximate analytical solution of the Schwinger–Dyson equation are of the same orders of magnitude.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.