Abstract

Investigating reconstructive phase transitions in large-sized systems requires a highly efficient computational framework with computational cost proportional to the system size. Traditionally, widely used frameworks such as density functional theory (DFT) have been prohibitively expensive for extensive simulations on large systems that require long-time scales. To address this challenge, this study employed well-trained machine learning potential to simulate phase transitions in a large-size system. This work integrates the metadynamics simulation approach with machine learning potential, specifically deep potential, to enhance computational efficiency and accelerate the study of phase transition and consequent development of grains and dislocation defects in a system. The new method is demonstrated using the phase transitions of bulk silicon under high pressure. This approach has revealed the transition path and formation of polycrystalline silicon systems under specific stress conditions, demonstrating the effectiveness of deep potential-driven metadynamics simulations in gaining insights into complex material behaviors in large-sized systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.