Abstract

We prove that phase transition occurs in the dilute ferromagnetic nearest-neighbour q-state clock model in Zd, for every q≥2 and d≥2. This follows from the fact that the Edwards–Sokal random-cluster representation of the clock model stochastically dominates a supercritical Bernoulli bond percolation probability, a technique that has been applied to show phase transition for the low-temperature Potts model. The domination involves a combinatorial lemma which is one of the main points of this article.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.