Abstract

We study the effect of boundary conditions on the relaxation time of the Glauber dynamics for the hard-core model on the tree. The hard-core model is defined on the set of independent sets weighted by a parameter $\lambda$, called the activity. The Glauber dynamics is the Markov chain that updates a randomly chosen vertex in each step. On the infinite tree with branching factor $b$, the hard-core model can be equivalently defined as a broadcasting process with a parameter $\omega$ which is the positive solution to $\lambda=\omega(1+\omega)^b$, and vertices are occupied with probability $\omega/(1+\omega)$ when their parent is unoccupied. This broadcasting process undergoes a phase transition between the so-called reconstruction and non-reconstruction regions at $\omega_r\approx \ln{b}/b$. Reconstruction has been of considerable interest recently since it appears to be intimately connected to the efficiency of local algorithms on locally tree-like graphs, such as sparse random graphs. In this paper we show that the relaxation time of the Glauber dynamics on regular $b$-ary trees $T_h$ of height $h$ and $n$ vertices, undergoes a phase transition around the reconstruction threshold. In particular, we construct a boundary condition for which the relaxation time slows down at the reconstruction threshold. More precisely, for any $\omega \le \ln{b}/b$, for $T_h$ with any boundary condition, the relaxation time is $\Omega(n)$ and $O(n^{1+o_b(1)})$. In contrast, above the reconstruction threshold we show that for every $\delta>0$, for $\omega=(1+\delta)\ln{b}/b$, the relaxation time on $T_h$ with any boundary condition is $O(n^{1+\delta + o_b(1)})$, and we construct a boundary condition where the relaxation time is $\Omega(n^{1+\delta/2 - o_b(1)})$.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call