Abstract
We demonstrated both experimentally and in theory analysis and calculation that the tin-modified lead zirconate titanate nanoporous ferroelectric generator system can perform as a micro-power supplying source for CMOS chip. The ferroelectric ceramic phase transition under transverse shock wave compression can charge external storage capacitor. The nanoporous microstructure ferro-electric ceramic micro-pulsed-power system is capable of generating low output voltage pulses and supplying CMOS chip with micro power sources. We developed the methodology for theory analysis and experimental operation of the ferroelectric generator. Analysis of the porous ferroelectric ceramic material was carried out by X-ray diffractometry and X-ray photoelectron spectroscopy. Microstructures and surface morphology of porous ferroelectric ceramics samples were examined by using scanning electron microscopy. The planar shock wave experiments were conducted on a compressed-gas gun. The experimental results were in good agreement with the theory analysis. Keywords: PSZT Ferroelectric Ceramic, Shock Wave, Phase Transition, Depolarization, Micro-Power-Generator.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.