Abstract
In this paper, we investigate the phenomena of order-disorder phase transition and the universality of the majority-rule model defined on three complex networks, namely the Barabási–Albert, Watts–Strogatz and Erdős–Rényi networks. Assume each agent holds two possible opinions randomly distributed across the networks’ nodes. Agents adopt anticonformity and independence behaviors, represented by the probability p, where with a probability p, agents adopt anticonformity or independence behavior. Based on our numerical simulation results and finite-size scaling analysis, it is found that the model undergoes a continuous phase transition for all networks, with critical points for the independence model greater than those for the anticonformity model in all three networks. We obtain critical exponents identical to the opinion dynamics model defined on a complete graph, indicating that the model exhibits the same universality class as the mean-field Ising model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.