Abstract

The phase transition of TiN from the NaCl structure to the CsCl structure is investigated by the first-principles plane wave pseudopotential density functional theory method, and the thermodynamic properties of the NaCl structures are obtained through the quasi-harmonic Debye model. It is found that the pressures for transition from the NaCl structure to the CsCl structure are 364.1 GPa (for GGA) and 322.2 (for LDA) from equal enthalpies. The calculated ground state properties such as equilibrium lattice constant, bulk modulus, and its pressure derivative are in good agreement with experimental and theoretical data of others. Moreover, the dependences of the relative volume V/V0 on the pressure P, the Debye temperature ΘD, and heat capacity CV on the pressure P and temperature T, as well as the variation of the thermal expansion α with temperature and pressure are also successfully obtained.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.