Abstract

The critical behavior of fragment production is studied within a Lattice Gas Model in the canonical ensemble. Finite size effects on the liquid-gas phase transition are analyzed by a direct calculation of the partition function, and it is shown that phase coexistence and phase transition are relevant concepts even for systems of a few tens of particles. Critical exponents are extracted from the behavior of the fragment production yield as a function of temperature by means of a finite size scaling. The result is that in a finite system well defined critical signals can be found at supercritical (Kertész line) as well as subcritical densities inside the coexistence zone.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.