Abstract

Structure, phonon, and energy storage density in Sr2+-substituted lead-free ferroelectric Ba1−xSrxTiO3 (BSTx) for compositions x = 0.1, 0.3, and 0.7 were investigated using X-ray diffraction, Raman, and ferroelectric polarization measurements as a function of temperature. The samples were tetragonal for x = 0.1 with a large c/a ratio. The tetragonal anisotropy was decreased upon increasing x and transforming to cubic for x = 0.7. The changes in structural and ferroelectric properties were found to be related to the c/a ratios. The temperature-dependent phonon spectroscopy results indicated a decrease in tetragonal–cubic phase transition temperature, Tc, upon increasing x due to a reduction in the lattice anisotropy. The intensity of ~303 cm−1 E(TO2) mode decreased gradually with temperature and finally disappeared around the tetragonal ferroelectric to cubic paraelectric phase at about 100 ℃ and 40 ℃ for x = 0.1 and 0.3, respectively. A gradual reduction in the band gap Eg of BSTx with x was evident from the analysis of UV-visible absorption spectra. The energy storage density (Udis) of the ferroelectric capacitors for x = 0.7 was ~0.20 J/cm3 with an energy storage efficiency of ~88% at an applied electric field of 104.6 kV/cm. Nearly room temperature transition temperatures TC and reasonably fair energy storage density of the BSTx capacitors were found.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call