Abstract
The high density ferroelectric ceramic with composition near Pb 0.99( Zr 0.95 Ti 0.05)0.98 Nb 0.02 O 3 ( PZT 95/5-2 Nb ) has been studied under dynamic loading. To characterize its ferroelectric-to-antiferroelectric(FE/AFE) phase transition under shock wave compression, reverse-impact experiments were conducted to determine the Hugoniot states of poled and unpoled PZT 95/5-2 Nb , and the shock-induced depoling currents were examined in an external circuit under short-circuit conditions for the poled PZT 95/5-2 Nb . The Hugoniot data and current results identify that the phase transition of FE/AFE has occured in the stress range of 0.4 GPa~1.8 GPa. In the phase transition stress range, the measured short-circuit currents show the increasing of rise time and the decreasing of final levels with the increase of shock stress.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.