Abstract

In-situ time-resolved X-ray absorption spectroscopy (XAS) and X-ray diffraction (XRD) are applied to investigate the phase transition mechanism between LiFePO4 and FePO4. Phase formation kinetics is discussed by using the phase fractions of LiFePO4 and FePO4 directly obtained from the XRD measurement and the amount of the passed current synchronized by the XRD measurement with Kolmogorov-Johnson-Mehl-Avrami (KJMA) analysis. For both of the lithium extraction and insertion process, the KJMA analysis from the XRD and amount of the passed current data indicate that the phase formation of LiFePO4 and FePO4 proceeds via one-dimensional phase boundary movement. For the lithium extraction process, the two phase coexistence of LiFePO4 and FePO4 is observed under the potential step conditions, and the KJMA plot based on the passed current data is relatively in good agreement with the one based on the XRD data. On the other hand, for the lithium insertion process, considerable peak boarding which implies intermediate state formation during the phase transition occurs, and the LiFePO4 phase formation is delayed compared with the amount of the passed current, especially in the case of small particle size. These results indicate that the phase transition behavior during lithium insertion is different from that of the typical two phase reaction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.