Abstract

Phase transformations induced in the cubic C-type lanthanide sesquioxides, ${\mathrm{Ln}}_{2}{\mathrm{O}}_{3}$ (Ln = Sm, Gd, Ho, Tm, and Lu), by dense electronic excitation are investigated. The structural modifications resulting from exposure to beams of 185 MeV Xe and 2246 MeV Au ions are characterized using synchrotron x-ray diffraction and Raman spectroscopy. The formation of a B-type polymorph, an X-type nonequilibrium phase, and an amorphous phase are observed. The specific phase formed and the transformation rate show dependence on the material composition, as well as the ion beam mass and energy. Atomistic mechanisms for these transformations are determined, indicating that formation of the B-type phase results from the production of anti-Frenkel defects and the aggregation of anion vacancies into planar clusters, whereas formation of the X-type and amorphous phases requires extensive displacement of both anions and cations. The observed variations in phase behavior with changing lanthanide ionic radius and deposited electronic energy density are related to the energetics of these transformation mechanisms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call