Abstract

Abstract Phase transformations in model mantle compositions and those in subducting slabs have been reviewed to a depth of 800 km on the basis of recent high‐pressure experimental data. Seismic velocity and density profiles in these compositions have also been calculated using these and other mineral physics data. The nature of the seismic velocity and density profiles calculated for a pyrolite composition was found to generally agree with those determined by seismic observations (e.g. PREM). The locations of the seismic discontinuities at 400 and 670 km correspond almost exactly to the depths where the transformations of the olivine component to denser phases take place. Moreover, the steep gradients in the seismic velocity/density profiles observed between these depths are qualitatively consistent with those expected from the successive transformations in the complementary pyroxene‐garnet component in the pyrolite composition. Further, the calculated seismic velocity and density values agree well with those observed in the upper mantle and mantle transition region within the uncertainties attached to these calculations and observations. Pyrolite or peridotite compositions are thus most likely to represent the composition of the mantle above 670 km depth, although some degrees of chemical heterogeneity may exist in the transition region. The observed sharp discontinuous increases of seismic velocities and density at this depth may be attributed either to the phase transformation to a perovskite‐bearing assemblage in pyrolite or to chemical composition changes. Density profiles in subducted slabs have been calculated along adequate geotherms assuming that the slabs are composed of the former oceanic crust underlain by a thicker harzburgitic layer. It is shown that the former oceanic crust is substantially less dense than the surrounding pyrolite mantle at depths below 670 km, while it is denser than pyrolite in the upper mantle and the transition region. The subducted former oceanic crust may be trapped in this region, forming a geochemically enriched layer at the upper mantle‐lower mantle boundary. Thick and cool slabs may penetrate into the lower mantle, but the chemically derived buoyancy may result in strong deformation and formation of megalith structures around the 670 km seismic discontinuity. These structures are consistent with those detected by recent seismic tomography studies for subduction zones.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.