Abstract

Nickel sulphide inclusions are known to be responsible for delayed fracture in tempered glasses due to phase transformation within the inclusion. Microstructural identification of the phase transformation mechanisms in the Ni–S system close to the NiS composition were carried out on a series of partially transformed states. Observations allow to investigate the morphological evolution during transformation, the phase orientation relationships and the first stages of the transformation were investigated by optical microscopy, electron backscatter diffraction, and scanning and transmission electron microscopy. The transformation mechanisms change significantly with the change in sulphur content of the α-NiS phase. Massive transformation is observed for near-stoichiometric composition. For overstoichiometric composition, the transformation is controlled by a long-range diffusion mechanism. The influence of stoichiometry and impurities (Fe) on the microstructural evolution and transformation mechanisms has also been studied.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.